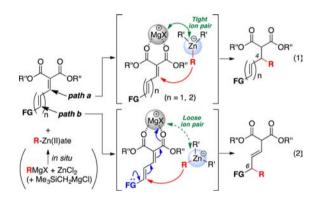


Regioselective 1,4- and 1,6-Conjugate Additions of Grignard Reagent-Derived Organozinc(II)ates to Polyconjugated Esters

Manabu Hatano, Mai Mizuno, and Kazuaki Ishihara*


Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan

Supporting Information

ABSTRACT: Regioselective synthetic methods were developed for 1,4- and 1,6-conjugate additions of Grignard reagent-derived organozinc(II)ates to malonate-derived polyconjugated esters. By taking advantage of the tight ion-pair control of organozinc(II)ates, it was possible to switch between 1,4- and

1,6-conjugate additions by introducing a terminal ethoxy moiety in the conjugation.

Regioselective conjugate addition to α,β -unsaturated carbonyl compounds with organometallic reagents, which are usually prepared in situ from commercially available Grignard reagents¹ and transition-metal salts, is one of the most important carbon-carbon bond-forming reactions. In particular, organocuprates(I) from Grignard, organozinc(II), and organoaluminum(III) reagents have been traditionally used for enantioand regioselective 1,4-conjugate addition, and seminal breakthroughs have been achieved in the last 10 years.³⁻⁶ Moreover, several advanced examples of 1,6- and 1,8-conjugate additions of Grignard reagents have begun to be reported with the use of copper(I) and other transition-metal salts. Traditional organozinc(II)ates, $[R_3Zn]^-[Li]^+$ or $[R_3Zn]^-[MgX]^+$, 8,9 have also been used for 1,4-conjugate addition of $\alpha\beta$ -unsaturated enones, 10 and recently, Dieter developed a regioselective 1,4-conjugate addition to nitrodienes. 11 However, the use of organozinc(II)ates for a regioselective 1,4-conjugate addition to less reactive α,β -unsaturated esters is rather limited. Unlike strongly π -coordinatable organocuprates(I) with high-lying d-orbitals, organozinc(II)ates with relatively low-lying d-orbitals would not act as metal-centered nucleophiles. 9a,b Alternatively, however, a tight ion pair of the hard nucleophilic [R₃Zn] moiety and the hard Lewis acidic [Li] or [MgX] moiety, which would selectively coordinate to the carbonyl moiety through a pathway of carbozincation, 9a might be promising. Accordingly, organozinc(II)ates would recognize the carbonyl moiety better than the π -conjugated moiety, and we envisioned that organozinc(II)ates might be practical alkylating reagents for α,β -unsaturated esters, if the substrates could be designed to fully match the character of the organozinc(II)ates. In this context, we report here the transition-metal-free highly regioselective 1,4- and 1,6-conjugate additions of Grignard reagentderived organozinc(II)ates to malonate-derived polyconjugated esters⁵ for the first time (eqs 1 and 2). In particular, chelation to the Mg(II)⁺ center with a 1,3-dicarbonyl moiety would promote 1,4-conjugate addition (path a) at the activation site close to the cationic [MgX]⁺ moiety due to the tight ion pair between the cationic $[MgX]^{-1}$ moiety and anionic $[R_3Zn]^{-1}$ moiety (eq 1). Moreover, if we introduce an electron-donating group to the substrates, it might weaken the tight ion pair of the organozinc(II)ates

and selectively activate the terminal conjugated carbon, so that 1,6-conjugate addition (path b) might occur selectively (eq 2).

First, we examined ethyl addition to dienyl esters 1a-c in tetrahydrofuran (THF) at -78 °C (Table 1). The reaction of diethyl malonate-derived 1a (0.3 mmol) with ethylzinc(II)ate (1.5 equiv), which was prepared in situ from EtMgCl (1.5 equiv), Me₃SiCH₂MgCl (3 equiv), and ZnCl₂ (1.5 equiv) (method proceeded quickly, and the corresponding 4-Et-adduct 2a was obtained in 91% yield within 1 h (entry 1). On the other hand, 1.5 equiv of EtMgCl for 1a without Me₃SiCH₂MgCl/ ZnCl₂ (method B) provided a mixture of 2a (56% yield) and undesired 6-Et adduct 3a (28% vield) (entry 2). Di-tert-butyl malonate 1b showed much lower reactivity than 1a, although the ratio of 2b/3b was still high when ethylzinc(II)ate was used (entry 3). In sharp contrast, no products were obtained from much less reactive monoester 1c (entries 5 and 6). This result would indicate that even highly nucleophilic [Et(Me₃SiCH₂)₂Zn]⁻ does not easily add to the nonchelatable ester 1c, since a lack of possible chelation to the labile Lewis acid Mg(II)+ would lead failure in keeping the nucleophilic [Et(Me₃SiCH₂)₂Zn]⁻ close to the appropriate reaction site such as the 4-position. ¹² Moreover, to avoid the synthetic limitation of malonates, hydrolysis and decarboxylation of 2a was performed to give 2a' in 90% yield.

Received: June 18, 2016
Published: September 7, 2016

Organic Letters Letter

Table 1. Ethyl Addition of Dienyl Esters 1a-c^a

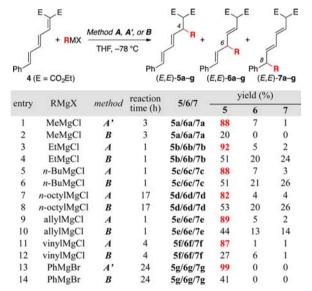
entry	1	method	reaction time (h)	2/3	yield (%)		
					2	3	
1	1a	A	1	2a/3a	91 (70) ^b	7 (26)b	
2	1a	\boldsymbol{B}	1	2a/3a	56	28	
3	1b	A	24	2b/3b	71	5	
4	1b	\boldsymbol{B}	24	2b/3b	38	10	
5	1c	A	5	2c/3c	0	0	
6	1c	\boldsymbol{B}	5	2c/3c	0	0	

^aThe reaction was conducted in THF at −78 °C with method A or B on a 0.3 mmol scale of 1, and isolated yields are shown. Method A: EtMgCl (1.5 equiv), Me₃SiCH₂MgCl (3 equiv) and ZnCl₂ (1.5 equiv). Method B: EtMgCl (1.5 equiv). ^bEtMgCl (1.5 equiv), Me₃SiCH₂MgCl (0.2 equiv) and ZnCl₂ (0.1 equiv) were used.

Unfortunately, a catalytic amount of ethylzinc(II)ate was not effective, and undesired 3a was obtained in significant amounts (entry 1, also see the Supporting Information).

We next investigated the generality of organozinc(II)ates for the 1,4-conjugate addition to 1a (Table 2). As a result, alkyl-,

Table 2. Regioselective Alkyl Addition at the 4-Position of Dienyl Ester 1a^a


entry	DMaV	method	2/3	yield (%)		
	RMgX	meinoa	2/3	2	3	
1	MeMgCl	A'	2d/3d	85	6	
2	MeMgCl	\boldsymbol{B}	2d/3d	23	2	
3	n-BuMgCl	A	2e/3e	88	10	
4	n-BuMgCl	\boldsymbol{B}	2e/3e	47	27	
5	n-octylMgCl	A	2f/3f	90	7	
6	n-octylMgCl	\boldsymbol{B}	2f/3f	46	24	
7	allylMgCl	A	2g/3g	84	9	
8	allylMgCl	\boldsymbol{B}	2g/3g	33	14	
9	vinylMgCl	A	2h/3h	97	0	
10	vinylMgCl	\boldsymbol{B}	2h/3h	53	0	
11^{b}	PhC≡CMgBr	A'	2i/3i	97	0	
12^{b}	PhC≡CMgBr	\boldsymbol{B}	2i/3i	33	0	
13^c	PhMgBr	A'	2j/3j	99	0	
14^c	PhMgBr	\boldsymbol{B}	2j/3j	64	0	
15	c-HexMgCl	A	2k/3k	39	60	
16	c-HexMgCl	\boldsymbol{B}	2k/3k	48	47	
17^d	t-BuMgCl	A	21/31	25	18	
18^d	t-BuMgCl	\boldsymbol{B}	21/31	23	18	

^aThe reaction was conducted in THF at -78 °C with Method A, A′, or B on a 0.3 mmol scale of 1a unless otherwise noted. Method A: Grignard reagent (1.5 equiv), Me₃SiCH₂MgCl (3 equiv) and ZnCl₂ (1.5 equiv). Method A′: Grignard reagent (4.5 equiv) and ZnCl₂ (1.5 equiv). Method B: Grignard reagent (1.5 equiv). ^bReaction temperature was gradually increased from −78 °C to −20 °C over 13 h. ^cThe reaction time was 24 h. ^dThe reaction time was 20 h.

alkenyl-, and alkynylzinc(II)ates (method A or A'), ¹³ which were derived from Me-, n-Bu-, n-octyl-, allyl-, and vinylMgCl and PhC \equiv CMgBr, could be used, and the corresponding 4-alkyl adducts $2\mathbf{d}-\mathbf{i}$ were obtained in 84-97% yields with high

regioselectivities (entries 1-12). Moreover, phenylzinc(II)ate (method A')¹³ could also be used, and **2j** was obtained in 99% yield with a formation of a small amount (<10% yield) of biphenyl (entry 13), which is sometimes observed in the reactions with phenylzinc(II)ate. ^{9j,11} Encouraged by these results, we further investigated the generality of 1,4-conjugate addition to trienyl ester **4** with 1° -alkylzinc(II)ates (Table 3).

Table 3. Regioselective Alkyl Addition at the 4-Position of Trienyl Ester 4^a

 a The reaction was conducted in THF at -78 $^{\circ}$ C with method A, A', or B on a 0.3 mmol scale of 4 unless otherwise noted.

As a result, a highly selective 1,4-conjugate addition to 4 occurred with the use of 1°-alkyl, vinyl-, and phenylzinc(II)ate (method A or A'). In contrast, when we used Grignard reagent alone (method B), a mixture of alkyl adducts at the 4-, 6-, and 8-positions (5, 6, and 7, respectively) was obtained. However, unlike the above less hindered organozinc(II)ates, sterically demanding 2°- and 3°-alkylzinc(II)ates (c-Hex- and t-Bu, respectively) were not effective, and the desired 1,4-adducts 2k and 2l were obtained from 1a with low regioselectivities (Table 2, entries 15 and 17).

To overcome this drawback in 2°- and 3°-alkyl additions to dienyl ester **1a**, we tried using less hindered enynyl ester **8a** (Table 4). ¹⁴ As a result, not only 1°-alkylzinc(II)ates (entries 1 and 3) but also alkynylzinc(II)ate (entry 5), phenylzinc(II)ate (entry 7), and 2°-alkylzinc(II)ates, which were derived from *i*-Pr- and *c*-HexMgCl (entries 9, 11, and 13), could be used with method A or A′. Remarkably, 3°-alkylzinc(II)ates derived from *t*-BuMgCl could be used without serious problems (entry 15). Notably, a terminal Ph moiety (see **8a**) could be replaced by *t*-BuMe₂Si (TBS) (see **8b**), and the corresponding 4-*i*-Pr-adduct **9f** was obtained in **99**% yield (entry 11).

By taking advantage of the high reactivity of enynyl ester $\bf 8a$, we transformed the obtained alkynyl ester $\bf 9g$ to the corresponding olefin (E)- $\bf 2k$ (eq 3). After the hydrogenation of $\bf 9g$ with Lindlar's catalyst, compound (Z)- $\bf 2k$ was obtained in 91% yield. Subsequent treatment of (Z)- $\bf 2k$ with iodine gave (E)- $\bf 2k$ in 72% yield. Since (E)- $\bf 2k$ was not successfully obtained directly from $\bf 1a$ due to steric reasons (eq 4), we could demonstrate the synthetic utility of such enyne-derived products.

Finally, we investigated the reaction of dienyl ester 11, which has a terminal EtO group 15 (Table 5). As shown in eq 2, electrondonation from the EtO group would provide the most activated

Organic Letters Letter

Table 4. Regioselective Alkyl Addition at the 4-Position of Enynyl Esters 8a and $8b^a$

entry	8	RMgX	method	Reaction	9/10	yield (%)	
ciitiy	0	Kwgx	memou	time (h)	3/10	9	10
1	8a	EtMgCl	A	1	9a/10a	92	0
2	8a	EtMgCl	\boldsymbol{B}	1	9a/10a	35	0
3	8a	BnMgCl	A	2	9b/10b	94	0
4	8a	BnMgCl	\boldsymbol{B}	2	9b/10b	30	3
5^b	8a	PhC≡CMgCl	A	14	9c/10c	98	0
6^b	8a	PhC≡CMgCl	\boldsymbol{B}	14	9c/10c	50	0
7	8a	PhMgBr	A'	18	9d/10d	95	0
8	8a	PhMgBr	\boldsymbol{B}	18	9d/10d	43	0
9	8a	i-PrMgCl	A	4	9e/10e	93	0
10	8a	i-PrMgCl	\boldsymbol{B}	4	9e/10e	53	14
11	8b	i-PrMgCl	A	4	9f/10f	99	0
12	8b	i-PrMgCl	\boldsymbol{B}	4	9f/10f	29	3
13	8a	c-HexMgCl	A	18	9g/10g	74	0
14	8a	c-HexMgCl	\boldsymbol{B}	18	9g/10g	44	9
15	8a	t-BuMgCl	A	2	9h/10h	94	0
16	8a	t-BuMgCl	\boldsymbol{B}	2	9h/10h	38	17
		_	_			_	

 a The reaction was conducted in THF at -78 $^{\circ}$ C with method A, A', or B on a 0.3 mmol scale of 8 unless otherwise noted. b Reaction temperature was gradually increased from -78 to -20 $^{\circ}$ C over 14 h.

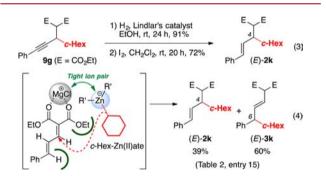


Table 5. Regioselective Alkyl Addition at the 6-Position of Dienyl Ester 11 with a Terminal Ethoxy Group^a

entry	RMgX	method	additive	12/13	yield (%)	
				12/13	12	13
1	EtMgCl	A	-	12a/13a	20	80
2	EtMgCl	A	HMPA	12a/13a	12	86
3	EtMgCl	A	DMI	12a/13a	14	68
4	EtMgCl	A	TMEDA	12a/13a	2	9
5	EtMgCl	\boldsymbol{B}	HMPA	12a/13a	6	39
6	EtMgCl	\boldsymbol{B}	-	12a/13a	13	47
7	MeMgCl	A	HMPA	12b/13b	8	80
8	MeMgCl	\boldsymbol{B}	-	12b/13b	3	65
9	vinylMgCl	A	HMPA	12c/13c	2	94
10	vinylMgCl	\boldsymbol{B}		12c/13c	4	60
11	PhMgBr	A'	HMPA	12d/13d	0	95
12	PhMgBr	\boldsymbol{B}	-	12d/13d	0	28
13	i-PrMgCl	A	HMPA	12e/13e	10	86
14	i-PrMgCl	\boldsymbol{B}	-	12e/13e	4	10

^aThe reaction was conducted in THF at −78 °C with method A, A', or B on a 0.3 mmol scale of 11 in the presence or absence of additive (1.5 equiv) unless otherwise noted. In method A', Me₃SiCH₂Li was used in place of Me₃SiCH₂MgCl in Table 5.

electrophilic carbon center at the 6-position (also see the DFT calculation in the SI). However, the possible tight ion pair of organozinc(II)ates would still promote the nearest 1,4-conjugate addition. Based on this hypothesis, we examined the use of highly coordinating additives, such as HMPA (hexamethylphosphoramide), DMI (1,3-dimethyl-2-imidazolidinone), and TMEDA (N,N,N',N'-tetramethylethylenediamine), in the presence of organozinc(II)ates to weaken the tight ion pair (Figure 1). As a

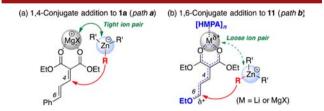


Figure 1. Control of regioselectivity with organozinc(II)ates.

result, HMPA (entry 2) was better than the other additives (entries 3 and 4). To Desired 6-Et adduct 13a was obtained in 86% yield with 4-Et adduct 12a in 12% yield (entry 2), whereas 13a was obtained in 80% yield with 12a in 20% yield in the absence of additives (entry 1). Since EtMgCl with HMPA did not switch the regioselectivity (entries 5 and 6), the combined use of ethylzinc(II)ate and HMPA should be necessary. Other organozinc(II)ates derived from Me- and vinylMgCl could be used with method A (or A') with HMPA, and high 13 selectivities were observed (entries 7 and 9). Moreover, phenylzinc(II)ate and isopropylzinc(II)ate provided products 13d and 13e in respective yields of 95% and 86%.

Moreover, to demonstrate the utility of this synthetic method, we conducted a sequential path b-path a reaction (eq 5). First, compound 11 was transformed to a prolonged conjugate triene 14 with vinyl-Zn(II)ate/HMPA (path b, 1,6-addition) and the subsequent use of $BF_3\cdot Et_2O$ in one pot. Next, compound 14 could be used for a new 1,4-conjugate addition (path a), and 4-Et-adduct 15 was selectively obtained as a major product.

In summary, we have developed highly regioselective 1,4- and 1,6-conjugate additions of Grignard reagent-derived organozinc-(II) ates to malonate-derived polyconjugated esters. The tight ion-pair control of organozinc(II) ates could promote 1,4-conjugate addition to dienyl, trienyl, and enynyl esters. Moreover, a terminal activating EtO moiety in the substrate with the use of HMPA could lead to 1,6-conjugate addition successfully. Overall, the scope of substrates can prove the efficient methodology for the regioselective formation of C-alkyl, C-aryl, C-alkenyl, and C-alkynyl bonds.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b01774.

Experimental procedures and characterization data (PDF)

Organic Letters Letter

AUTHOR INFORMATION

Corresponding Author

*E-mail: ishihara@cc.nagoya-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support was partially provided by MEXT and KAKENHI (26288046 and 15H05755). We thank Kenji Yamashita (Nagoya University) for technical support.

REFERENCES

- (1) (a) Wakefield, B. J. Organomagnesium Methods in Organic Chemistry; Academic Press: San Diego, 1995. (b) Silverman, G. S.; Rakita, P. E. Handbook of Grignard Reagents; Marcel Dekker: New York, 1996. (c) Richey, H. G., Jr. Grignard Reagents: New Development; Wiley: Chichester, 2000. (d) Knochel, P. Handbook of Functionalized Organometallics; Wiley-VCH: Weinheim, 2005. (e) Yorimitsu, H. In Science of Synthesis, Knowledge Updates (2011); George Thieme: Stuttgart, 2010; Chapter 7.6.5.6, pp 1–9. (f) Yorimitsu, H. In Science of Synthesis, Knowledge Updates (2011); George Thieme: Stuttgart, 2010; Chapter 7.6.10.9, pp 11–19.
- (2) (a) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992. (b) Lipshutz, B. H. In Organometallics in Organic Synthesis, A Manual, 2nd ed.; Schlosser, M., Ed.; John Wiley & Sons: Chichester, 2002; pp 665–815.
- (3) For reviews and references therein: (a) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796. (b) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824. (c) Alexakis, A.; Krause, N.; Woodward, S. In Copper-Catalyzed Asymmetric Synthesis; Alexakis, A., Krause, N., Woodward, S., Eds.; Wiley—VCH: Weinheim, 2014; pp 33—68. (d) Tissot, M., Li, H.; Alexakis, A. In Copper-Catalyzed Asymmetric Synthesis; Alexakis, A., Krause, N., Woodward, S., Eds.; Wiley—VCH: Weinheim, 2014; pp 69—84.
- (4) Selected papers with the use of α , β -unsaturated esters: (a) Lee, J. C. H.; Hall, D. G. *J. Am. Chem. Soc.* **2010**, *132*, 5544. (b) den Hartog, T.; Rudolph, A.; Maciá, B.; Minnaard, A. J.; Feringa, B. L. *J. Am. Chem. Soc.* **2010**, *132*, 14349. (c) Rudolph, A.; Bos, P. H.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. *Angew. Chem., Int. Ed.* **2011**, *50*, 5834. (d) Mao, B.; Fañanás-Mastral, M.; Feringa, B. L. *Org. Lett.* **2013**, *15*, 286. (e) Hartog, T. d.; Huang, Y.; Fañanás-Mastral, M.; Meuwese, A.; Rudolph, A.; Pérez, M.; Minnaard, A. J.; Feringa, B. L. *ACS Catal.* **2015**, *5*, 560. (f) Jumde, R. P.; Lanza, F.; Veenstra, M. J.; Harutyunyan, S. R. *Science* **2016**, *352*, 433.
- (5) Selected papers with the use of Meldrum's acids: (a) Pearson, A. J.; Mesaros, E. F. Org. Lett. 2002, 4, 2001. (b) Schuppan, J.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2004, 792. (c) Fillion, E.; Wilsily, A. J. Am. Chem. Soc. 2006, 128, 2774. (d) Wilsily, A.; Fillion, E. Org. Lett. 2008, 10, 2801. (e) Wilsily, A.; Fillion, E. J. Org. Chem. 2009, 74, 8583. (f) Ahmar, S.; Fillion, E. Org. Lett. 2014, 16, 5748.
- (6) Recent selected papers of Cu(I) catalysis with Zn(II) or Al(III) reagents: (a) Gremaud, L.; Alexakis, A. Angew. Chem., Int. Ed. 2012, 51, 794. (b) Müller, D.; Alexakis, A. Org. Lett. 2012, 14, 1842. (c) Magrez, M.; Wencel-Delord, J.; Alexakis, A.; Crévisy, C.; Mauduit, M. Org. Lett. 2012, 14, 3576. (d) Dabrowski, J. A.; Villaume, M. T.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 8156. (e) Drissi-Amraoui, S.; Morin, M. S. T.; Crévisy, C.; Baslé, O.; Marcia de Figueiredo, R. M.; Mauduit, M.; Campagne, J.-M. Angew. Chem., Int. Ed. 2015, 54, 11830.
- (7) (a) Krause, N.; Thorand, S. I. *Inorg. Chim. Acta* 1999, 296, 1. (b) Csákÿ, A. G.; de la Herrán, G.; Murcia, M. C. *Chem. Soc. Rev.* 2010, 39, 4080. (c) Silva, E. M. P.; Silva, A. M. S. *Synthesis* 2012, 44, 3109. (d) Schmid, T. E.; Drissi-Amraoui, S.; Crévisy, C.; Baslé, O.; Mauduit, M. *Beilstein J. Org. Chem.* 2015, 11, 2418. (e) Meng, F.; Li, X.; Torker, S.; Shi, Y.; Shen, X.; Hoveyda, A. H. *Nature* 2016, DOI: 10.1038/nature19063.
- (8) We have reported the catalytic and stoichiometric use of ZnCl₂ with Grignard reagents for carbonyl compounds. (a) Hatano, M.;

- Suzuki, S.; Ishihara, K. J. Am. Chem. Soc. 2006, 128, 9998. (b) Hatano, M.; Suzuki, S.; Ishihara, K. Synlett 2010, 2010, 321. (c) Hatano, M.; Ito, O.; Suzuki, S.; Ishihara, K. Chem. Commun. 2010, 46, 2674. (d) Hatano, M.; Ito, O.; Suzuki, S.; Ishihara, K. J. Org. Chem. 2010, 75, 5008. (e) Hatano, M.; Yamashita, K.; Mizuno, M.; Ito, O.; Ishihara, K. Angew. Chem., Int. Ed. 2015, 54, 2707. (f) Hatano, M.; Yamashita, K.; Ishihara, K. Org. Lett. 2015, 17, 2412.
- (9) Zinc(II) ate reagents in recent organic synthesis: (a) Mori, S.; Hirai, A.; Nakamura, M.; Nakamura, E. Tetrahedron 2000, 56, 2805. (b) Uchiyama, M.; Nakamura, S.; Furuyama, T.; Nakamura, E.; Morokuma, K. J. Am. Chem. Soc. 2007, 129, 13360. (c) Murakami, K.; Yorimitsu, H.; Oshima, K. J. Org. Chem. 2009, 74, 1415. (d) Dieter, R. K.; Guo, F. J. Org. Chem. 2009, 74, 3843. (e) Hevia, E.; Chua, J. Z.; García-Álvarez, P.; Kennedy, A. R.; McCall, M. D. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 5294. (f) Armstrong, D. R.; Clegg, W.; García-Alvarez, P.; McCall, M. D.; Nuttall, L.; Kennedy, A. R.; Russo, L.; Hevia, E. Chem. - Eur. J. 2011, 17, 4470. (g) Armstrong, D. R.; Clegg, W.; García-Álvarez, P.; Kennedy, A. R.; McCall, M. D.; Russo, L.; Hevia, E. Chem. - Eur. J. 2011, 17, 8333. (h) Dieter, R. K.; Huang, Y.; Guo, F. J. Org. Chem. 2012, 77, 4949. (i) Armstrong, D. R.; Garden, J. A.; Kennedy, A. R.; Mulvey, R. E.; Robertson, S. D. Angew. Chem., Int. Ed. 2013, 52, 7190. (j) Dhakal, R. C.; Dieter, R. K. J. Org. Chem. 2013, 78, 12426. (k) Nagashima, Y.; Takita, R.; Yoshida, K.; Hirano, K.; Uchiyama, M. J. Am. Chem. Soc. 2013, 135, 18730. (1) Vidal, C.; García-Álvarez, J.; Hernán-Gómez, A.; Kennedy, A. R.; Hevia, E. Angew. Chem., Int. Ed. 2014, 53, 5969. (m) Bluemke, T. D.; Clegg, W.; García-Alvarez, P.; Kennedy, A. R.; Koszinowski, K.; McCall, M. D.; Russo, L.; Hevia, E. Chem. Sci. 2014, 5, 3552. (n) Wang, X.; Hirano, K.; Kurauchi, D.; Kato, H.; Toriumi, N.; Takita, R.; Uchiyama, M. Chem. - Eur. J. 2015, 21,
- (10) (a) Isobe, M.; Kondo, S.; Nagasawa, N.; Goto, T. Chem. Lett. 1977, 6, 679. (b) Tückmantel, W.; Oshima, K.; Nozaki, H. Chem. Ber. 1986, 119, 1581. (c) Watson, R. A.; Kjonaas, R. A. Tetrahedron Lett. 1986, 27, 1437.
- (11) Dhakal, R. C.; Dieter, R. K. Org. Lett. 2014, 16, 1362.
- (12) We preliminarily investigated nonchelatable Meldrum's acid derived substrate, etc. See the SI.
- (13) Some organozinc(II)ates were prepared by method A' since $Me(Me_3SiCH_2)_2Zn(II)$ ate gave Me_3SiCH_2 adducts and $(PhC \equiv C)$ $(Me_3SiCH_2)_2Zn(II)$ ate and $Ph(Me_3SiCH_2)_2Zn(II)$ ate showed low solubility under the reaction conditions, respectively.
- (14) The alkyne moiety was found to be highly effective for relieving the steric constraints in alkyl addition to α -imino esters. See ref 8e.
- (15) For synthetic reasons, the EtO group was selected. We examined ethyl addition to substrates with other groups, such as MeO, *i*-PrO, Me₃SiCH₂O, and *N*-pyrrolidinyl. However, due to the stability of these starting materials and/or the corresponding products, a complex mixture was obtained. See the SI.
- (16) (a) Normant, H. Angew. Chem., Int. Ed. Engl. 1967, 6, 1046.
 (b) Singer, R. D.; Oehlschlager, A. C. J. Org. Chem. 1992, 57, 2192.
- (c) Yamanaka, M.; Nakamura, E. Organometallics 2001, 20, 5675.
- (d) Alizadeh, N.; Amini, M. K. Iran. J. Chem. & Chem. Eng. 2001, 20, 12.
- (17) We used Me₃SiCH₂Li in place of Me₃SiCH₂MgCl since the coordination of HMPA to Li(I) would be stronger than that to Mg(II).